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A Function-based Fuzzy PID (F-FPID) Controller 
Yehya Dadam, Eldaw Eldukhri 

 

Abstract— This paper describes the concept of a function-based fuzzy proportional-integral-derivative (F-FPID) controller. An important 
feature of the proposed controller is that its structure comprises only four fuzzy rules each with two antecedents and two consequents. It 
performs proportional-derivative (PD) and integral (I) control actions using fuzzy elements rather than analytically using delay loops as is 
the case in input-based FPID (I-FPID). To assess its viability, the developed controller was used to control a bench-scale pH process. The 
experimental results demonstrated satisfactory performance of the proposed controller in maintaining the pH value at prescribed levels. 

Index Terms— Fuzzy logic control, function-based fuzzy PID, pH control process.   

——————————      —————————— 

1 INTRODUCTION                                                                     

LTHOUGH many sophisticated control theories and 
techniques have been developed in the last few decades 
(Middelton, Goodwin, Hill and Mayne 1988; Branicky, 

Borkar and Mitter 1998; Morari and Lee 1999; Syafiie, Tadeo, 
Martinez and Alvarez 2011; Astrom and McAvoy1992; Loh, 
Looi and Fong 1995), PID controllers continue to be the most 
commonly used in industrial processes (Cominos and Munro 
2002). This is because they have simple structure and are rela-
tively easy to implement by great majority of practitioners and 
automatic control designers. However, they are usually not 
effective if the processes have inherently intractable characte-
ristics such as high order and nonlinearities (Visioli 2001), as is 
the case with pH control process. These difficulties meant that 
various types of modified conventional PID controllers such as 
auto-tuning and adaptive PID controllers were developed late-
ly (Astrom, Hagglund, Hang and Ho 1993; Ho, Hang and Cao 
1995).  

Nonetheless, benefiting from the recent developments in 
evolutionary computing, many researchers have focused their 
research on improving the performance of PID controllers and 
extending their applicability to more complex systems (Mann, 
Hu and Raymond 2001; Mohan and Sinha 2008). In particular, 
fuzzy logic control (FLC) has found many successful industrial 
applications and demonstrated significant performance im-
provements (Baogang, George, and Raymond 1999; Zhu, Ton-
cich, Nagarajah and Romanski 1997; Khan and Rapal 2006; 
Zhao, Tomizuka and Isaka 1993). Nevertheless, fuzzy control-
ler design remains an imprecise process because there are in-
sufficient analytical design techniques available in contrast 
with the well developed linear control theories. Despite this, in 
fuzzy systems, the way that the control knowledge is built 
gives flexibility to the controlled process to act in a linear or 
non-linear manner depending on the operating conditions.   

A large amount of research has been carried out on design-
ing fuzzy PID controllers (FPID) (Baogang, George, and Ray-
mond 1999; Zhu, Toncich, Nagarajah and Romanski 1997). 

These fuzzy controllers can be classified into three types, 
namely, direct action (DA); gain scheduling (GS); and combi-
nation of DA and GS types. In GS type controllers, fuzzy infe-
rence is used to calculate the individual PID gains and the in-
ference is either error driven self-tuning (Zhao, Tomizuka and 
Isaka 1993) or performance-based supervisory tuning (Silva 
1995). The majority of FPID applications belong to the DA 
type where the FPID is placed within the feedback control 
loop and computes the PID actions through fuzzy inference 
(Khan and Rapal 2006; George, Baogang and Raymond 1999). 
Direct action FPID (DAFPID) structures have been reported 
with one, two or three inputs (error, change of error and rate 
of change of error) (Mann, Hu and Raymond 1997; Mann, Hu 
and Gosine 1999). In DAFPID, the integration and derivation 
are executed entirely outside of the fuzzy controllers. In other 
words, DAFPID does not use any fuzzy system to carry out 
either the fuzzy integral or the fuzzy derivative actions. So the 
fuzzy system only performs the non-linear amplification asso-
ciated with the PID’s three control actions. Consequently, 
DAFPID controllers are input-based FPID controllers (I-FPID) 
rather than function-based FPID controllers (F-FPID). 

This paper describes a function-based FPID controller that 
is designed using two fuzzy control elements, PD and I to con-
trol a bench-scale pH process. The controller has the following 
advantages over I-FPID controllers: 

1. It has a simple rule based structure of four rules each 
with two antecedents and two consequents. 

2. It performs proportional derivative (PD) and integral 
control actions using fuzzy elements rather than ana-
lytically using delay loops as is the case in I-FPID (Zhu, 
Toncich, Nagarajah and Romanski 1997; Silva 1995; 
Mann, Hu and Gosine 1999). 

3. The two output control actions (PD and I) can be tuned 
independently unlike I-FPID controllers (Mann, Hu 
and Raymond 1997; Mann, Hu and Gosine 1999). 

The remainder of the paper is organized as follows. Section 
2 describes the F-FPID structure. In section 3, the design pro-
cedure for the F-FPID controller is outlined. Section 4 presents 
the experimental results. Conclusions are given in section 5. 

2 F-FPID STRUCTURAL ELEMENTS 
Linear PID controllers can be classified into different catego-
ries with respect to the positioning of the three terms in the 

A 

———————————————— 
 Yehya Dadam, BSc, PhD, was with the Department of Automatic Control 

and Industrial Electronics, Aleppo University, Syria. Since 1996 he has 
been with Cardiff School of Engineering, Cardiff University, Cardiff, CF24 
3AA, UK, PH-00447900817463. E-mail: ydadam@hotmail.com 

 EldawEldukhri, BEng, MSc, PhD, CEng, MIET, is with Cardiff School of 
Engineering, Cardiff University, Cardiff, CF24 3AA, UK,  
PH-00442920879066. E-mail: eldukhriee@cf.ac.uk) 



International Journal of Scientific & Engineering Research, Volume 3, Issue 9, September‐2012                                                                                         2 
ISSN 2229‐5518 

IJSER © 2012 
http://www.ijser.org 

closed loop control system. The cascade form PID controller is 
commonly employed and its output in Laplace-form is given 
by: 

   sE
s

K
sKKsU i

dpPID 





     (1) 

where Kp, Kd and Ki are the proportional, derivative and 
integral gains respectively, and E(s) is the error signal in Lap-
lace-form. The PID controller’s output can be rewritten in a 
discrete form as follows: 

       nTUnTUnTUnTU IDPPID    (2) 

where T > 0 is the sampling time and n=1, 2, 3... By using the 
backward difference rule for differentiation and the trapezoid 
integration rule for integration, each term of (2) can be defined 
as follows: 

   nTeKnTU PP    (3) 

   nTΔeKnTU DD    (4) 

      nTΔUKTn-UnTU IIII  1    (5) 

where 
     nTYnTYnTe d    (6) 

      Tn-enTenTΔe 1   (7) 

      Tn-enTenTΔUI 1   (8) 

where e(nT), Yd(nT) and Y(nT) are the signal error, the feed-
back response signal and the desired response signal all at t = 
nT and KP = Kp, KD = Kd/T and KI = KiT/2. Substituting (3), (4) 
and (5) into (2) gives: 

     
    nTΔUKTn-U

nTΔeKnTeKnTU

III

DPPID




1                       (9) 

As it can be seen from (9), the output of the PID controller 
in absolute form is achieved by employing the two input error 
variables e(nT) and e((n-1)T). This can be rewritten as follows: 

      
        Tn- ,enT ,eTnUf

Tn- ,enTefnTU

II

PDPID

11                  

1




  (10) 

where IPD ff ,  are the proportional-derivative and integration 

functions to be implemented employing fuzzy inference and 
  TnUI 1 is the previous integration action. The functions 

IPD ff ,  can be designed and implemented using two-input 

function based fuzzy elements. Then, the final outputs of both 
functions are summed to form the overall F-FPID controller as 
depicted in fig. 1. The design and implementation of the two 
functions IPD ff , is explained in the following section.  

 
Fig. 1. F-FPID controller 

3 DESIGN PROCEDURE FOR A FUNCTION BASED FUZZY 
CONTROLLER 

In (10) it can be seen that the proportional-derivative and integral 
functions IPD ff ,  are respectively functions of the two error va-

riables e(nT) and e((n-1)T). After normalising within the range [-1, 
1], the two error variables E1 and E2 (see Fig. 1) can be expressed 
as follows: 

  11 KenTKeE                                            (11) 

   22 1 KeTn-KeE                                       (12) 

where K is the input scaling factor. Because the two input va-
riables are of the same nature, their input universes will be 
designed similarly. The universes of discourse of each input 
variable are identically partitioned by employing N symme-
trical triangular membership functions with a 50% overlap as 
shown in Fig. 2. The membership functions on the right and 
left ends of the range are right-angled triangles. In turn, the 
input variable range is divided into M = N -1 ranges each of 
length 2L. 

 
 
 
 
 
 
 

 
Fig. 2.  Universe of discourse for F-FPID input variables E1, E2 

 
The universe of discourse of the output is divided into 2M-

1 output zones. The total number of membership functions 
defined on the output universe of discourse is equal to 4(2M-
1). By employing a two-input control element, a fuzzy rule 
base with (N-1)2 input operating zones can be built depending 
on the two dimensional input space. One output zone is em-
ployed for each input zone. Four fuzzy rules are generated for 
each input operating zone. No more than one input zone is 
allowed to fire at one time. Therefore, 4(N-1)2 fuzzy rules with 
two antecedents and two consequents are generated to form F-
FPID controller. The input operating zone is specified accord-
ing to the position of the crisp inputs in their corresponding 
input universes. As well as this, within the specified input 
zone, one of eight input conditions (IC1-IC8), as shown in Fig. 
3, can be specified [21]. In the following section, an analytical 
solution for the function based control elements PDf  will be 
achieved. 

3.1 Function based Proportional-Derivative Fuzzy 
control element (F-FPD) 

Two membership functions (N=2 and M=1) are considered 
for each input universe for the normalised input variables 
E1 and E2 as presented in Fig. 4. These two membership 
function universes represent one of the input zones men-
tioned in the previous section. 
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Fig. 3.  Possible input conditions for each input zone 

 
 
 
 
 
 
 
 

 
Fig. 4.  Input universes used to derive the F-FPID output analytically 

 
Since the number of output zones is 2M-1, one output 

zone resulted with four membership functions. The output 
universe for the normalised output UPD is shown in Fig. 5. 
These four membership functions represent one output 
zone; the distances between the centres of the membership 
functions are shown in the figure. 
 
 
 
 
 
 
 

 
Fig. 5.  Universe of discourse for F-FPID input variables E1, E2 
 

As mentioned previously, only one input operating zone is 
considered and four fuzzy rules are generated as follows: 

P is U THEN E is E AND E is E IF         :1 Rule PD2P21P1

VP is U THEN E is E AND E is E IF        : 2 Rule PD2N21P1

VN is U THEN E is E AND E is E IF         : 3 Rule PD2P21N1  N is U THEN E is E AND E is E IF         : 4 Rule PDN21N1  
 
where [E1P, E1N], [E2P, E2N] and [P, VP, N, VN] are fuzzy terms 
of the normalised input variables E1 and E2 and the norma-
lised output variables UPD (nT) respectively. These rules are 
generated conventionally following the approach adopted in 

[22]. Mamdani’s Min-max method is employed to infer the 
fuzzy output of the control element. As well as this, the centre 
average defuzzification method [23] is used to calculate the 
control element crisp output. The fuzzy output will be a trape-
zoid whose height (h) is equal to the membership degree re-
sulting from the min-operator through the fuzzy inference. 
Based on the inference employed and the height value (h) for 
each of the four rules under the eight input conditions, the 
fuzzy output is listed in Table 1. The analytical solution of the 
fuzzy control element proportional-derivative function 

),( 21 eefPD is found to be as follows for the input conditions 
IC1, IC2, IC5, and IC6 [3]: 

 21
1

1
1

21 242
 ee
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PD      (13) 

 (13) can be rewritten as follows: 
   211 11

ee LKe LKnTU
PDPD ONDONPPD   (14) 

 
where, using (11) 
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Similarly, the output of the function based proportional 
derivative control element for the input conditions IC3, 
IC4, IC7, and IC8 is given by: 
 

 21
2

1
2 242

ee
KeL-

KL
e
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Consequently, the output of the function based propor-
tional derivative control element for those input conditions 
is given by: 

   211 22
ee LKe LKnTU

PDPD ONDONPPD    (17) 

where, using (12) 
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where 

2211 NDNPNDNP  and K,KK,K are non-linear proportional 
and derivative gains calculated in terms of e1 and e2 at each 
sampling interval according to the input conditions . The finer 
the partition is the more input and output operating zones are 
required. The same set of rules can be used for different input 
and output zones, but the fuzzy terms in both the antecedents 
and consequents must match the input and output operating 
zones. In the next section the function based integration fuzzy 
control element will be explained as introduced in [24]. 

3.2 Function based Integral Fuzzy control element (F-
FI) 

The conventional integral action as shown in (5) consists of 
two parts. The first part represents the accumulated control 
action starting from initial condition   Tn-U I 1 ; the second 
part is the incremental output of the controller  nTΔUI . Con-
sequently, the output of the function based integration ele-
ment must have the same structure. It has been reported that 
to implement the integration initial condition, the centres of 
the output universe membership functions are shifted after the 
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kth time step by a distance 




1

0
)(C

k

n
I nTU  [24]. The output 

universe of discourse is partitioned as shown in Fig. 6. 
 

 
 
 
 
 
 
 
 

 
Fig. 6.  Output universe used to derive F-FI output analytically 

 
The shifting process, which represents the memory of the 

fuzzy integration element, is shown in Fig. 7. 
 

 

Fig. 7.  Shifting process of the integration fuzzy element. 

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The same procedure as in the previous section is pursued 
for partitioning the input universes of the two error variables. 
Four fuzzy rules are generated as follows: 

P is (nT) U THEN E is E AND E is E IF               :1 Rule I2P21P1 
 Zis (nT) U THEN E is E AND E is E IF              : 2 Rule I2N21P1 
 Zis (nT) U THEN E is E AND E is E IF              : 3 Rule I2P21N1   
N is (nT) U THEN E is E AND E is E IF              : 4 Rule I2N21N1   

 
where [E1P, E1N], [E2P, E2N] and [P, Z, N] are fuzzy terms of the 
normalised input variables E1and E2 and the normalised out-
put variables (nT) UΔ I  respectively. More details on how the 

fuzzy rules were generated can be found in [18]. In a similar 
way, by employing the same inference and the same defuzzifi-
cation method used in the previous section, the output of the 
integration fuzzy element can be obtained. Based on the infe-
rence employed and the value (h) of each fuzzy rule under the 
eight input conditions, the fuzzy output and the value (h) of 
each fuzzy rule under the four input conditions are listed in 
Table 2. The analytical solution to the fuzzy control element 
integration function ) , e)T),e((n-U(f II 211 in (10) is found to be 

as follows for the input conditions IC1, IC2, IC5, and IC6: 
      21121 24 1 eeKeLKLC,e,eTnUf
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TABLE 1  
PROPORTIONAL-DERIVATIVE FUZZY ELEMENT 
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Similarly, for the input conditions IC3, IC4, IC7, and IC8, 
UI(nT) will be: 

   21
224
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                              (20) 

In general, the output of the function based integration con-
trol element can be rewritten using (19) and (20) as follows: 
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IONII                                   (21) 

where )24()24( 11 ELKKeLKK NI   is the non-linear 
integral gain for the input conditions IC1, IC2, IC5, and IC6 and 

)24()24( 22 ELKKeLKK NI   for the input conditions 
IC3, IC4, IC7, and IC8.  
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Based on the above description, it can be seen that the fuzzy 

system can approximate an integration control function with 
non-linear gain NIK . The finer the partition is, the larger the 
number of input and output zones that is required. 

The same set of rules can be used for different input and 
output zones, but the fuzzy terms in both the antecedents and 
consequents must match the input and output operating 
zones. 

3.3 F-FPID total output 
The final output of the F-FPID (see Fig. 1) is calculated as a 
summation of both outputs of the two fuzzy elements (PD, I) 
described respectively in (17) and (21) as follows: 
 

IIPDPDPID UKUKU 
        

                                 (22) 
where KPD and KI are the output scaling factors. Subsequently, 
the final output of the F-FPID can be tuned through linear and 
non-linear gains. Comparing the output of the F-FPID with the 
output of a one-input I-FPID [22], it can be seen that the out-

put of the I-FPID can be tuned in a similar way to the F-FPID 
through one non-linear gain and three independent linear 
gains. Therefore, the differentiation and the integration func-
tions are achieved based on the output of the proportional 
element not on the error as in F-FPID. Hence, the I-FPID per-
forms only as a fuzzy proportional device and then the diffe-
rentiation and integration are done analytically based on the 
fuzzy proportional element output. From an adaptive tuning 
point of view the modification depends on the proportional 
action, while in the F-FPID, free parameters can be tuned 
based on the output of both PD and I. 

4 F-FPID APPLICATION AND RESULTS 
To show the efficiency of the proposed F-FPID controller, a 
highly non-linear and time varying system was controlled 
using such a controller. This system (depicted in Fig. 8) is an 
online pH control process which is found in a variety of indus-
tries including wastewater treatment, pharmaceuticals, bio-
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technology and chemical processing [6]. In these applications 
the pH value must be maintained within stringent limits. 
However, high performance and robust pH control is often 
difficult to achieve due to the nonlinear and time-varying cha-
racteristics of the process [25]. The main aim is to control the 
pH value of the reactor solution. However, since the level of 
the reactor plays an important role in changing the features 
and the initial conditions of the process, both the pH value 
and the solution level were controlled simultaneously. The 
input variables of the pH controller are the current and pre-
vious errors between the pH set points and the actual pH val-
ue in the reactor, measured by a pH sensor, while the output 
variable is the voltage applied to either the Acid or the Alkali 
pumps. The input variables of the level controller are the cur-
rent and previous errors between the level set points and the 
actual levels in the reactor, measured by the level sensor, 
while the output variable is the voltage applied to the recycled 
solvent pump.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 8 pH control process 
 

Following the F-FPID design procedure explained earlier, 
the input spaces of the two fuzzy control elements PD and I 
were partitioned into two membership functions (M=2). This 
resulted in one input operating zone. The output universes of 
the two fuzzy control elements were partitioned into four 
membership functions. The distances

PDOL and 
IOL  were set at 

0.5 and 0.08, respectively. As a result, four fuzzy rules, each 
with two antecedents (E1, E2) and two consequents 

))(,( nTUU IPD   were generated for the single input operat-
ing zone. The F-FPID rule base for the single input operating 
zone is as follows: 
 P is (nT) UΔ  AND P is  U THEN E is E AND E is E IF:1 Rule IPD2P21P1

 Zis (nT) UΔ  AND VP is  U THEN E is E AND E is E IF:2 Rule IPD2N21P1

 Zis (nT) UΔ  AND VN is  U THEN E is E AND E is E IF:3 Rule IPD2P21N1

N is (nT) UΔ  AND N is  U THEN E is E AND E is E IF:4 Rule IPD2N21N1  
 
The parameters KPD and KI were tuned in a heuristic way to 

give as good a performance as possible. The parameter KPD 
was assigned the same value (KPD=80) for the different operat-
ing ranges of pH. However, due to the high non-linearity of 
the pH process, different integration gains (KI=0.1, 0.25 and 
0.5) were used to accommodate the steady state errors asso-
ciated with the dissimilar operating ranges of pH. The output 

of the controller was used to determine which chemical, acid 
(HCL) or alkali (NaOH), should be pumped into the reactor. 
Although the level of the reactor could have been controlled 
using a simpler controller such as a conventional P or PI, it 
was also controlled using the F-FPID controller but with dif-
ferent parameters. Because the focus of this work was on con-
trolling the pH values, the solution levels were not presented. 
The control scheme was constructed as shown in Fig. 9. 

To demonstrate the effectiveness of the proposed F-FPID, 
different set points for the pH value were used as shown in 
Fig. 10, 11 and 12. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9.  Control system loop employed for pH process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 10.  pH control using F-FPID with parameters: KPD=80; KI=0.1 

5 CONCLUSIONS 
In this paper the design procedure for a new function based 
fuzzy PID controller (F-FPID) was outlined. The proposed F-
FPID controller consists of two fuzzy control elements PD and 
I. A rule base of four fuzzy rules, each with two antecedents 
and two consequents, was generated. Based on that rule base, 
analytical solutions of the two fuzzy elements (PD and I) were 
derived proving that those two fuzzy elements and the gener-
ated rule base can approximate proportional-derivative and 
integral functions. It was proven that the final output of F-
FPID represents a PID-like controller with a non-linear control 
policy. The advantage of F-FPID over I-FPID controller is that 
it performs differentiation and integration using purely fuzzy 
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elements rather that utilising delay loops as in I-FPID control-
lers. Unlike I-FPID, the two control actions of F-FPID can be 
tuned independently to achieve the required performance. 
Finally, to evaluate the new concept of F-FPID, a highly non-
linear pH system was controlled over different ranges. The 
proposed controller proved itself capable of handling such a 
system. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 11.  pH control using F-FPID with parameters: KPD=80; KI=0.25 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 12.  pH control using F-FPID with parameters: KPD=80; KI=0.5 
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